

Module 8: Soil pH and Lime Management

To view the chapter for this topic click here.

IOWA STATE UNIVERSITY Extension and Outreach

Introduction

- Soil pH: measure of the soil acidity and alkalinity.
- If soil pH:

• Soil pH is influenced by the relative proportion of acidic and basic cations on the soil exchange complex.

- Common acidic cations → H⁺, Al³⁺, Fe²⁺, and Fe³⁺
- Common basic cations \longrightarrow Ca²⁺, Mg²⁺, K⁺, NH₄⁺, Na⁺

Introduction

- Factors influencing soil pH:
 - o parent material
 - o length of weathering and soil formation
 - o climate
 - o organic matter mineralization
 - NH₄⁺ fertilizer rate and nitrification to NO₃⁻
 - o cropping system and crop harvest
 - o land use and management
- Most agricultural soils in dry climates have alkaline conditions.
- Acidic conditions occur in soils:
 - o derived from parent material high in elements such as silica
 - o high proportion of sand with low buffering capacities
 - o in regions with high precipitation

Relative Nutrient Availability and Microbial Activity

Nutrient availability and microbial activity as affected by soil pH; the wider the band, the greater the relative availability or activity. Adapted from N. Brady. The Nature and Properties of Soils, 10th ed.

Negative Effect of Acidic Soils

• Less solubility of essential and non-essential elements.

• Increased solubility and toxicity from Al³⁺, Mn²⁺, and H⁺.

• Often greater weed stress because of the poor crop growth and low competition.

• Reduced soil microbial activity.

Testing for Soil pH

NRCS 4

- Soil pH measurement:
 - o soil to water ratio of 1:1 (most common in the U.S.) or 1:2
 - o saturated soil paste
 - o dilute salt solutions (such as KCl or CaCl₂)
- It is important to be aware of the soil pH test being used and to be consistent across sampling to ensure comparable data over time.
- For example, pH measured with dilute salt solutions will have a lower pH value than measured with water.

Suggested Optimum Soil pH for Crops

• The optimal soil pH varies widely for different plant species.

Сгор	Optimum Soil pH	Suggested optimum	
	range	рН	
Alfalfa	6.2-7.5	7.0	
Barley	5.5-7.0	6.5	
Corn	5.5-7.0	6.5	
Soybean	5.5-7.0	6.5	
Wheat	5.5-7.0	6.5	
Source: Havlin et al., 2005. Soil fertility and fertilizers.			

Soil Sampling: Methods, Timing, and Frequency

• Appropriate soil sampling is critical in determining liming needs.

• At least 12 cores at random locations across the area of interest are recommended.

• Sampling and limestone application should be completed several months in advance of crop planting.

• Soil pH may fluctuate during the year, so sample timing should be consistent and be appropriate for the cropping system.

Soil Sampling: Methods, Timing, and Frequency

- Frequency of needed soil sampling will depend on:
 - o soil properties
 - o cropping system or rotation
 - the source and amount of N applied
 - o the quality and type of liming material used
- Sampling at least every three to five years is recommended.
- Results from samples collected from producer's fields and field-scale research have shown very high pH variation within fields and even within soil map units.
- Dense soil sampling approaches and variable rate technologies are being adopted at a rapid rate by producers.

Soil Sampling: Methods, Timing, and Frequency

Example of soil pH spatial variability using a zone or grid soil sampling approach for a central Iowa field with several soil types. Adapted from A.P. Mallarino, Iowa State University.

Managing Soil pH for Alkaline Soils

- Alkaline soils: exchange complex is saturated with basic cations.
- In soils with pH 7.2 to 8.5, pH is controlled by dissolution of free lime.
- In soils with pH 8.5 to 10.5, pH is controlled by exchangeable Na⁺ and Na₂CO₃.
- Decreasing pH of alkaline soils is difficult and typically impractical on a field scale.
- Soil pH reduction can be achieved in localized (small areas) by application of:
 - o elemental sulfur (S), ferrous sulfate (FeSO₄), and aluminum sulfate $[Al_2(SO_4)_3]$
 - o salt issues can develop if the amount of acidifying material applied is large, and AI toxicity is possible.

Managing Soil pH for Acidic Soils

- Application of N fertilizers and many manure sources increase soil acidity.
- Liming is the most common method for neutralizing soil acidity.
- Liming materials are most often materials such as CaCO₃ and MgCO₃.
- Limestone reacts with CO_2 in the soil to yield bicarbonate (HCO_3^{-}), which reacts with H⁺ and AI_3^{+} .
 - These reactions take acidic cations off the exchange complex and out of solution.
- The amount of limestone material to apply depends on:
 - o the amount of reserve soil acidity to be neutralized
 - the quality of the liming material (purity and particle size)

Rate of Limestone Application

- The amount of limestone needed to adjust soil pH depends on:
 - o desired pH level for a particular crop
 - o initial soil pH
 - o soil cation exchange capacity (the soil clay and OM content)

- Analytical methods have been developed to determine lime requirement:
 - o soil incubation
 - o direct titration
 - o buffer solutions (SMP, Sikora, Mehlich, etc.)
 - o fast direct titrations with a single addition of a base

Timing of Limestone Application

- Crops with greater sensitivity to low pH should have pH corrected well in advance of seeding.
- If subsoil pH is low, a long period will be required for the limestone to effect a change in the soil pH with depth.
- Coarse limestone particles react more slowly.
- Incorporation into the soil will provide faster reaction and pH adjustment.
- Surface application will have most impact on pH near the soil surface.
- When a rapid pH correction is needed, the use of a finely ground limestone or agricultural ground limestone with good quality should be considered.

Variable Rate Liming

• Variable rate liming has recently grown in popularity.

• Variable rate liming helps target appropriate rates to field areas having lower-than-optimum pH and reduces or avoids application in areas with high pH.

• This application method increases liming efficiency and therefore profitability.

Liming Materials

Liming Material	CCE	Equivalent to one ton pure limestone	
	- % -	lb	
Calcium carbonate	100	2000	
Calcitic limestone	85-100	2350-2000	
Dolomitic limestone	95-109	2100-1830	
Burned lime	150-175	1330-1140	
Hydrated lime	120-135	1670-1480	
Basic Slag	50-70	4000-2900	
Baked oyster shells	80-90	2500-2200	
Source: Havlin et al., 2005. Soil fertility and fertilizers.			

Summary

- Soil pH is considered the single most important chemical property of soil.
- Limited solutions exist for reducing pH in high pH soils.
- Soil acidity reduces plant nutrient availability, increases toxicity of some elements, and reduces activity of many microbes.

- Lime application is the most common way to neutralize acidity.
- Buffer solutions, single titrations, and indexes that include soil characteristics are the most widely used approaches to determine lime rate requirements.
- The large within-field spatial variability found in many U.S. regions justifies variable rate technology for limestone application.